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SUMMARY 

This report describes numerical methods which have been incorporated into a 

computer program to provide estimates of the subsonic aerodynamic performance of 

twisted and cambered wings of arbitrary planform with attainable thrust and 

vortex lift considerations taken into account. The computational system is 

based on a linearized theory lifting surface solution which provides a spanwise 

distribution of theoretical leading-edge thrust in addition to the surface 

distribution of perturbation velocities. In contrast to the commonly accepted 

practice of obtaining linearized theory results by simultaneous solution of a 

large set of equations, the approach used here relies on a solution by iteration. 

The method also features a superposition of independent solutions for a cambered 

and twisted wing and a flat wing of the same planform to provide,at little addi- 

tional expense, results for a large number of angles of attack or lift coeffi- 

cients. A previously developed method is employed to assess the portion of the 

theoretical thrust actually attainable and the portion that is felt as a vortex 

normal force. 



INTRODUCTION 

The aerodynamic performance of wings at subsonic speeds is critically 

dependent on the amount of leading-edge thrust that can actually be realized. 

In reference 1, a study of the factors which place limits on the theoretical 

leading-edge thrust was made,and an empirical method for estimation of attain- 

able thrust was developed. The applicability of the method was demonstrated 

by comparisons of theoretical and experimental aerodynamic characteristics for 

a series of wing-body configurations which employed wings without twist or 

camber. Suggestions for extension of the method to wings with twist and camber 

were made. 

This report describes numerical methods which have been incorporated into a 

computer program to permit the analysis of twisted and cambered wings of arbi- 

trary planform with attainable thrust considerations taken into account. The 

computational system is based on a linearized theory lifting surface solution 

which provides a spanwise distribution of theoretical leading-edge thrust in 

addition to the surface distribution of perturbation velocities. In contrast 

to the commonly accepted practice of obtaining linearized theory results by 

simultaneous solution of a large set of equations, the approach used here relies 

on a solution by iteration. The method also features a superposition of inde- 

pendent solutions for a cambered and twisted wing and a flat wing of the same 

planform to provide,at little additional expense, results for a large number 

of angles of attack or lift coefficients. A key feature of the superposition 

technique is the use of leading-edge thrust singularity parameters to identify 

and separate singular and nonsingular velocity distributions. This separation 

permits more accurate determination of leading-edge thrust and more accurate 

integration of pressure distributions for twisted and cambered wings of arbitrary 

planform. The methods discussed in reference 1 are employed to assess the 

portion of the theoretical thrust actually attainable and the portion that is 

manifested as a vortex normal force according to the Polhamus analogy (ref. 2). 
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SYMBOLS 

b 

C 

c 

C ave 

C e 

CA 

CN 

'A,C 

'A,F/C 

‘NJ 

'N,C,C 

'N,C,F 

'N,F 

Ct 

't,a 

C 
V 

Ct,f 

wing span 

local wing chord 

mean aerodynamic chord 

average wing chord, S/b 

element chord at element midspan 

section axial force coefficient 

section normal force coefficient 

component of cA due to basic pressure loading of camber surface 

at 0" angle of attack acting on camber surface 

components of CA due to basic pressure loading of flat wing at 

1" angle of attack acting on camber surface 

component of cN due to basic pressure loading of camber surface 

at 0" angle of attack acting on camber surface 

component of cN c due to pure camber loading (the contribution with 

no leading-edge'singularity) 

component of cN c due to flat wing loading (the contribution with 

a leading-edge lingularity) 

component of cN due to basic pressure loading of flat wing at 

1" angle of attack acting on camber surface 

theoretical section leading-edge thrust coefficient 

attainable section leading-edge thrust coefficient 

section vortex force coefficient 

theoretical section leading-edge thrust coefficient for a 

flat wing at 1" angle of attack 
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cA 

cN 

cD 

cL 

CM 

cP 

C 
P,c 

C 
P,f 

C 
p,c,c 

C 
p,c,f 

f 

FfW 

Fc(x’ ) 

GW > 

wing axial force coefficient 

wing normal force coefficient 

wing drag coefficient 

wing lift coefficient 

wing pitching-moment coefficient 

pressure coefficient 

pressure coefficient on the cambered wing at 0" angle of attack 

pressure coefficient on the flat wing of 1" angle of attack 

component of C due to pure camber loading (the contribution with 

no leading-edgE':ingularity) 

component of C due to flat wing loading (the contribution 

with a leading%ge singularity) 

location correction factor for program perturbation velocity 

(see equation 8) 

normal force integration factor for basic pressure loading of flat 

wing at 1" angle of attack acting on the flat surface (see equation 

22). Also used as normal force integration factor for flat wing 

contribution to the basic cambered wing loading at 0" angle of 

attack acting on the camber surface; and as axial force integra- 

tion factor for basic pressure loading of flat wing at 1" angle 

of attack acting on the camber surface 

normal force integration factor for the pure camber contribu- 

tion to 'the basic cambered wing loading at 0" angle of attack 

acting on the camber surface (see equation 25) 

axial force integration factor for basic pressure loading of flat 

wing at 1" angle of attack acting on the camber surface (see 

equation 30) 



i 

j 

S 

S 

Au 

A”C 

AUf 

us VI W 

V 

xs Y, z 

X’ 

Xi8 Xi 

Ax 

AxC ,AxR,Ax L 

index of wing element longitudinal position within the wing 

program grid system (see figure I) 

index of wing element lateral position within the wing program 

grid system (see figure 1) 

constants used in definition of camber surface slope 

constants used in curve fitting of program perturbation velocities 

and pressure coefficients for integration purposes 

Mach number 

Reynolds number 

linearized theory downwash velocity influence function 

(see equation 4) 

wing reference area 

distance along section camber line 

longitudinal perturbation velocity difference across the wing 

lifting surface as a fraction of the free stream velocity 

value of Au for the cambered wing at 0" angle of attack 

value of Au for the flat wing at 1" angle of attack 

perturbation velocities in the x, y, and z directions, respectively 

free stream velocity 

Cartesian coordinates 

distance in the x direction measured from the wing leading edge 

X’ values at leading and trailing edge of wing element at element 

semispan 

values of x' at which camber surface z ordinates are specified 

longitudinal spacing of grid lines used in establishment of 

program wing grid system 

longitudinal distances employed in the influence function R 

[see sketch (d)] 



(ALJ~~)~ 

(Au=),,, 

(Aum)o,f 

E 
0 

“zt 

A 

"le 

limiting value of leading-edge thrust parameter Au/?-at the wing 

leading edge 

limiting value of leading-edge thrust parameter Auflat the 

wing leading edge for the cambered wing at 0" angle of attack 

limiting value of leading-edge thrust parameter Au/?-at the wing 

leading edge for the flat wing at 1" angle of attack 

angle of attack of wing (in degrees unless otherwise specified) 

JET7 

angle between a line tangent to the wing section camber surface 

and the camber surface reference plane 

value of E at wing leading edge 

angle of attack of wing giving a local theoretical leading-edge 

thrust of zero for a specified wing spanwise station 

sweep angle of element quarter chord line 

sweep angle of wing leading edge 

DEVELOPMENT OF COMPUTATIONAL SYSTEM 

Development of this method begins with what is believed to be a unique 

approach to the theoretical analysis of wings at subsonic speeds. Among the 

features are linearized theory solutions by pure iteration, and the use of 

leading-edge singularity parameters to identify separate velocity distribution 

components with and without singularities. The later feature permits more 

accurate determination of leading-edge thrust distribution for wings with twist 

and camber and provides for improved pressure distribution integration techniques. 

The linearized theory solution will be described first, and then attention will 

be given to the empirical determination of attainable leading-edge thrust and 

detached vortex flow forces used in the estimation of overall wing performance. 

Program Grid System and Hing Definition . 

The linearized theory solutions are obtained by an iterative solution of 

influence equations for an array of trapezoidal wing elements representing the 

actual wing planform as depicted in figure 1. Here only a small number of 
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elements are shown for the purpose of illustration; in practice several hundred 
elements would be employed. The elements are superimposed on a rectangular 

grid so that the inboard and outboard element chords lie along unit values of 

tl?z spanwise parameter my and the midspan leading and trailing edges lie on unit 

values of the chordwise parameter x/Ax. The scaling of the wing from model or 

airplane dimensions to program dimensions is chosen to provide the desired number 

of elements in the spanwise direction. The distance Ax controls the chordwise 

spacing of the elements; it is selected by specification of an element aspect 

ratio which is constant for all but the leading-edge and trailing-edge elements. 

Element corner points at the wing leading and trailing edges are found by inter- 

polation of the scaled program 

input planform definition. These. 

points determine the leading-edge 

sweep of the first element and the 

trailing-edge sweep of the last 

element in each chordwise row 

identified by the index j(Ay). 
Sweep angles for elements between 

the leading- and trailing-edge 

elements are found from simple Sketch (a) 
geometry for a superimposed 

arrow wing planform as indicated 

in sketch (a). Each element is assigned a number as indicated in figure 1 and 

a record is kept of the number assigned to the leading- and trailing-edge elements 

in each chordwise row. The index i(x/ax) is used in determining the order of 

solution; elements are selected first according to advancing values of the i 

index then according to advancing values of the j index. The order of solution 

thus marches front to rear and inboard to outboard. 

The wing surface slopes are obtained by a curve fit of interpolated program 

input camber surface coordinates. The curve fit equation has the form: 

2 = z. + k,(x' - xi, + k2(x' - x;)2 (1) 



As shown in sketch (b), the inter- 

polated input camber surface ordinates 

are chosen so as to place one ordinate 

xi at or ahead of the element leading 

edge, one ordinate xi within the element 

and one ordinate x,j at or behind the 

element trailing edge. With the con- 

stants kl and k2 chosen to pass the curve 

through these three points, they can 

then be used in definition of the 

element surface slope expressed as: 

A-. 
uL = kl + k2 x; dx 

z 

-c 

-x’ e 

ZE 
I “; xi 

I - x’ 
element L 

Sketch (b) 

(2) 

where 

X’ e is distance from element leading edge and kl and k2 are 

redefined to correspond to the new origin 

Stored values of kl,e and k2,e allow subsequent recalculation of surface slopes 

anywhere within the element. The slope at the element three-quarter point is 

used in satisfying boundary conditions. As will be discussed subsequently, the 

program repeats the basic linearized theory solution for two wing surfaces. One 

of these wing surfaces has the slopes described above; the other has a constant 

slope equal to the tangent of 1 degree angle of attack (dz/dx = -0.01745). 

Linearized Theory Solution 

Each trapezoidal element used to represent the wing is assumed to have an 

associated horseshoe vortex with a bound leg along the quarter chord line and 

trailing legs extending to infinity along the extensions of the inboard and 

outboard chords as shown in sketch (c). At any point in the plane of the wing, 

the downwash velocity created by the vortex is given by: 
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Vortex 

; = $ Au ce 

Sketch .(c) 

(3) 

where 

Au is the longitudinal perturbation velocity difference across 

the wing surface 

C e is the element average chord, and 

Ris the influence factor 

In terms of the geometry system used here, R-is given as: 

(Afjy to. 5) + AXR tanA/6 

+ (ABY +0~5)~ 

(ABY -0.5) + AXL tan/l/f3 

(A)c~)~ + (ABY -0~5)~ 1 
1 

(A&’ -0.5) 
AxL 1 (A)c~)~ + (ABY -o.5)2 

t AXR 1 + (A@ +o.5)2 
(4) 



The three terms in equation (2) represent, respectively, the bound leg, the 

left trailing leg, and the right 

trailing leg. The geometric 

quantities represented in Influencing 
equation (2) are illustrated 

in sketch (d). The sign 

convention is such that the 

Ax quantities in the sketch 

are negative. Equation (4) 

has been obtained by reducing 

the more general equation (8) 

------ 

/i*Xc 
L field 

point 

of ref. 3 to the planar con- 

ditions assumed here. 
Sketch (d) 

The downwash at any point in the plane of the wing induced by the complete 

wing may be found by a summation of the contributions of all the individual ele- 

ments. At the control point of a field point element at which the boundary 

condition of no flow through the element is to be met,the downwash velocity is 

given as: 

(;)* = E Tii;au*C; - & C i? Au c 
e (5) 

where the starred quantities refer to the field point element 

and the summation includes all elements but the field point 

element itself. 

The boundary condition is met when 

or 

(6) 

10 



Before the solution by iteration is begun,perturbation velocities for all 

elements are set to zero. Then,in the order described in the section "Grid 

System",each element in turn is considered as a field point element and a per- 

turbation velocity for that element satisfying the boundary condition is found. 

This new velocity replaces the old one in the velocity table, and the calculation 

proceeds to the next element. As a means of verifying the solution convergence, 

the absolute value of the velocity differences between successive iterations is 

calculated for each element, and an average value of this difference for the 

whole wing is found. The iteration process is discontinued when for two succes- 

sive iterations this average difference is less than one-half of one percent 

(0.005) of the average pressure loading of the flat surface at 1" angle of attack. 

As means of reducing computational time, only elements relatively close to 

the field point are considered in the first iteration. As the iteration process 

proceeds and the convergence criteria is approached,the region of influence 

considered is expanded. The influence region is related to the convergence 

criteria in such a way as to insure that at least for the last two iterations, 

the whole wing is included. An element is excluded from the summation if: 

Asy is greater than 4+2JO.O05/CNVGP (JBYMAX - 2) 

or 

AxL or AxR (whichever is less) is greater than 

PAX + JO.OO~/~N~GP (XMAX X SCALE - PAX) 

where CNVGP is the value of the average difference 

ratio for the previous iteration, SCALE is the 

program scale factor, and the other quantities are 

as defined in the symbol list or in the section 

"Computer Program." 
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Correction of Program Results 

Because of the element system used to represent the wing, it was known at 

the outset that there would be errors in the numerical solution in the region 

of the wing leading edge. It was anticipated that these errors would be system- 

atic in nature and thus predictable so that corrections could be made. Such a 

strategy was employed in reference 4 for supersonic flow over wings with subsonic 

leading edges. To study the present numerical solution errors, the programmed 

solution was modified slightly to permit a solution for a two-dimensional wing. 

Typical program results for a flat (uncambered) two-dimensional wing at one 

degree angle of attack are shown in figure 2. Velocity distributions are shown 

for uniform chord elements at the left of the figure and for a smaller chord 

first element at the right. The program results are compared with the exact 

linearized theory solution: 

or 

(7) 

with CI in radians. The plot of the singularity parameteraum allows a more 

critical comparison of numerical results with the exact linearized theory. The 

numerical result velocities are assumed to act at the element quarter chord. As 

shown at the left of the figure, with uniform chord spacing only the first ele- 

ment result is in error. For a smaller first chord as shown at the right, pro- 

gram results for the first two elements (but only the first two elements) behind 

the leading edge were found to be in error. 

When other first element chords were employed, results such as those shown 

at the upper part of figure 3 were obtained. The well behaved nature of the 

errors suggested that a correction could easily be made. As in reference 4, the 

location of the velocity,not its magnitude,is corrected, although for subsonic 

flow the reasons for this choice are not compelling. As shown in sketch (e),if 

the location x' is multiplied by a correction factor f, the singularity parameter 
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now expressed as Audfx' Will follow 
the dashed curve. Thus it is a 

simple matter to find a new x' 

location, defined by the factor 

f, which will produce agreement 

with the exact linearized theory. 

The required factor for each of 

the program data points is shown 

at the middle of figure 3. Also 

shown is a curve fit to the 

correction factor data defined by: 

I I I I 
f x’ 
A% 

Sketch (e) 

f= 1 + 0.36 (1*25x;,~~'Ax) +0.18 sin (5 V) for Xl/Ax <0.5 

and (8) 

- f = 1 + 0.36 (1s25 ""') xl/AX 
+(I . 18 sin (j-25 - X'IAX 

1.5 
7T) for x~,Ax ,o . 5 

The singularity parameter obtained when the location of the velocity is defined 

by the factor f is shown at the bottom of figure 3. 

It was found that the simple correction derived from the two-dimensional 

results appeared to be equally valid in three dimensions. Typical program 

results for constant chord wings (right hand panel only) of various sweep angles 

at M = 0 are shown in figure 4. The singularity parameter is shown as a function 

of chordwise position for a midspan section. It is seen that there is no erratic 

behavior of the first two elements. Results for other sweep angles between 0" 

and 80" and other Mach numbers up to 0.8 were similar. 

Convergence of the Iterative Solution 

It was found that the iterative solution converged quite rapidly to a 

reasonable approximation of fully converged results as estimated by extrapolation 

and as given by vortex lattice matrix inversion methods. However; when stringent 

convergence criteria are applied, as is required to obtain accurate leading-edge 

singularity information, a large number of iterations may be necessary. An 
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example for a 40 degree leading-edge sweep constant chord wing (right hand panel 

only) is given in figure 5. The first and second iterations give the general 

character of the solution. More than four iterations are required before suffi- 

ciently accurate leading-edge perturbation velocities are provided. The program 

convergence criteria previously discussed is met after the tenth iteration in 

this example. For more complex planforms and for severely cambered wings more 

iterations will be required. For some of the examples shown later up to 50 

iterations were required. 

Superposition of Cambered and Flat Wing Solutions 

In this program , results covering a range of angles of attack are obtained 

by combining the solution for the input cambered wing (considered to be at 0" 

angle of attack) with a solution for a flat wing of the same planform at 1" 

angle of attack. An example of these basic solutions for a 40" swept leading- 

edge constant chord wing (one panel only) is shown in figure 6. The mean 

camber surface is defined as an arc of a circle with a radius selected to give 

a leading edge slope of dz/dx =0.0875 (a 5" angle). Results for the cambered 

wing are given at the top of the figure, and results for the flat wing are given 

at the bottom. Note that the cambered wing as well as flat wing displays a 

leading-edge singularity. 

Figure 7 shows results for other angles of attack obtained by combining the 

cambered and the flat wing solutions by use of the expression: 

Au = Au, + Auf :;; ;o 

The angle of attack of 1.8O was chosen for this illustration because at or near 

that angle the leading-edge singularity vanishes. The velocity distribution for 

this case may be considered to be a pure camber loading. For this constant cur- 

vature surface, the velocity distribution closely follows a curve defined by: 

Au = kc 
J 
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or 

(‘0) 

A distribution of this form will be used in the subsequent analysis of leading 

edge thrust characteristics. 

Theoretical Section Thrust Characteristics 

Figure 8 illustrates how the.angle of attack for a vanishing singularity at 

a given spanwise station may be found directly. Singularity parameters in the 

form AU- are shun for the first three elements of both the cambered wing 

at CY. = 0" and flat wing at CL = lo. From previous observations of the nature of 

cambered and flat wing velocity distributions, it is reasonable to assume a 

leading-edge singularity parameter of the form: 

AUm = kf&?+ kc$ m (1') 

where the first term represents a flat wing contribution and the second term a 

pure camber contribution. Curve fits of the data for the first two elements 

using this equation are shown as the dashed lines. The singularity parameter 

values at the wing leading edge (given by the values of kf and kc) will be 

designated as (Au=)~ f and (Au@-)~ c for the cambered and flat wing, 

respectively. It now becomes clear tiat the angle for a vanishing singularity 

or, in other terms, the angle for zero leading edge thrust is simply: 

azt = 

(Aum)o, c 
(12) 

(Au=),, f 

Using relationships developed in reference 5 it may be shown that the 

section leading-edge thrust coefficient is related to the singularity parameter 

by: 

Ct 
= ; $ Jtan2nl,+82(AUfl)o12 (13) 
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For the flat wing: 

( A'Jm, = (Aum sin a 

0,f sin 1" 

and 

(14) 

With the definition of azt and ct f the section thrust coefficient may be 

found for any angle of attack by ise of the expression: 

sina ' 

Ct = Ct,f 

- Slnazt 2 

sin 1" 1 (15) 

The preceding derivations for the evaluation of section thrust characteris- 

tics are based on the assumption of constant curvature of the camber surface in 

the region of the leading edge (a linear variation in the surface slope) for at 

least the first two elements. For application of the method to severely cambered 

surfaces, the wing must be composed of a large enough number of elements to pro- 

vide nearly constant curvature over these first two elements behind the leading 

edge. 

Section Aerodynamic Coefficients 

Section aerodynamic coefficients are found by integration of the section 

pressure distributions, for which the pressure coefficient is assumed to be given 

by Cp = 2Au. Since perturbation velocities are obtained by superposition of 

cambered and flat w ing solutions,the pressure coefficient may be expressed as 

C 
P = cp,c 

+c sin a 
p,f sin 1" 06) 

. . 

or 

C 
P 

= 2 Auc + 2 Auf “5;; 70 (17) 
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As shown in sketch (f) the 

pressure acting on the airfoil 

camber surface produces an 

incremental section normal 

force given by: 

dcN = Cpds COSE= Cp dx' 

and an incremental section 

axial force given by: 

dcA = Cp ds sinE 

= -C (dz, dx' 
P dx 

Sketch (f) 

The section coefficients may thus be expressed as: 

1 
‘N = 2; 

rC 

I Cp dx' 

0 

C +) dx' 
P dx 

(18) 

(‘9) 

In order to account for leading-edge singularities where appropriate and to 

avoid them where not appropriate, the integrations are performed by parts. 

Normal force coefficient. - The total section normal force coefficient 

(exclusive of thrust or vortex forces) is given by: 

‘N = ‘N,C + 'N,F % ';' (20) 

cN F, the section normal force coefficient generated by the flat wing pressure 

diitribution for 1" angle of attack is obtained by the integration 
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depicted in sketch (g). Within the 

limits of a given element (xi to x!2) 

the pressure distribution is assumed 

to have the form: CP,f 

Cp = 2Au = 2kf --$ - 1 
J 

x'l x; 

Sketch (g) 
with the constant kf defined so 

as to pass the curve through the cp value at the element quarter chord (or 

the corrected location for the first two elements). The incremental section 

normal force for this element is given by the integral: 

x; 

dcN,F = 
I 

Cp dx' = 2kf 1; /v dx' (21) 

xi 

The integration may be performed through use of the substitutions: 

C J --I- - 1 = cot ; 
X 

and 

dx' = isinede 

with 

I 

case = 1 - 2 5 

The result is: 

dcN,F = Ffb')Cp f , (22) 
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where 

Ffh’ 1 = $. tan$[e2 - e, + sine2 - sine,] 

with 

9 = cos -' (1 - 2x'/c) 

e2 = cos -' (1 - 2xi/c) 

7 = cos -' (1 - 2Xi/C) 

The section normal force coefficient is simply the integral of the incremental 

coefficients: 

I 
C 

1 
'N,F = G dcN,F dx' 

0 

which, as carried out in the program, is merely a summat 

The integration for the cambered wing section norma 

two parts. First,as indicated in 

sketch (h), the cambered wing 

pressure distribution is separated I- 
into two parts. This is accom- 

plished through use of the angle 

of attack for a section thrust 

coefficient of zero: 

ion. 

1 force 

C 
p,c = CP,c,f 

+c 
p,c*c 

C 
p,c,f = -aZt Cp,f 

cP,c,c = cp,c - c 
p,c,f 

(23) 

is performed in 

L 

r 
CP,C#f 7 

Sketch (h) 
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The integration of the flat plate component 

fashion as was the basic flat wing pressure 

previously discussed to obtain a cambered w 

The integration of the pure camber loading, 

use of sketch (i). Within the 

limits of a given element, the 

pressure distribution is assumed 

C 
p,c,f 

is handled in the same 

distribution at 1" angle of attack 

ng normal force contribution, CN c F. 

C 
P,C,C’ may be explained through't;e 

r 
to have the form: 

C 
P 

= 2Au = 2kc Jx'(C - x') “i x’2 

with the constant kc defined so as Sketch (i) 

to pass the curve through the Cp. 

value at the element quarter chord (or the corrected location for the first two 

elements). The incremental section normal force for the element is given by the 

integral: 

dCN,C,C = 

On integration: 

I 
xh 

Cp dx' = 2kc 

xi 

dcN ,C,C = Fc(x') C 
P,C,C 

I x; 
v'x'(c - x') dx' 

xi 

(24) 

(25) 

where 

_ 1 sin -1 2xi - _ 
4 ( C '1 1 
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Then: 

dcN ,C = dcN ,C,C + dCN,C,F 

And: 

I 
C 

1 
'N,C = tave dcN,C dx' 

0 

(26) 

which is obtained as a simple summation. 

Axial force coefficient. - The total section axial force coefficient 

(exclusive of thrust and vortex forces) is given by: 

CA = 'A,C 

'A,F/C' the section axial force coefficient generated by the flat wing pressure 

distribution for 1" angle of attack acting on the cambered wing surface is 

+ ‘&F/C ::: ;“O (27) 

obtained by the integration depicted 

in sketch (j). As before, within a 

given element the pressure distribu- 

tion is assumed to have the form: 

Cp = 2Au = 2kf 3 - 1 
I- 

the camber surface slope within 

the element is assumed to be 

expressable as: 

dz dx = k, + k2 x' 

The incremental section inter- 

ference coefficient for this 

element is given by the integral: 

xi xi 

Sketch (j) 
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i 
x; 

dCA,F/C = - , Cp(+$ dx' 

= -2 kfk, ,; ,57:2 Qk, 1; x'/pdx' = dcA,F,C,, + dCA,F,;;;) 

With the exception of the factor -k,, the first integral is identical to that 

for dcN,F. Therefore: 

dCA,F/C,l = -kfFf(x') Cp f 
3 

with Ff(x') .as previously defined. 

The second term may be integrated to yield: 

dCA,F/C,2 = -kc G(x') Cp f 
9 

where 

G(x') = $ tan; [G,(xh)- G,(xi) + G2b$) - G2(xi)I 

with 

Gl(Xi) = (; - 2) -F - (-F) 'l/%7 

1 G2(xi) = B sin -1 L2($ - ;)I 

1 G2(x;) = T sin -1 

(29) 

(30) 

and 

case = 1 - 2 ; 
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Then: 

dCA,F/C = dCA,F/C,T + dcA,F/C,2 

And: 

I 
C 

'A,F/C = &, dCA,F/C dx' 
0 

is obtained as a sumnation. 

(31) 

After some unsuccessful initial efforts it was concluded that an analytic 

basis for pressure integrations to obtain the remaining basic section coefficient, 

cA c, offered more complications than any benefits would justify. The section 

ax;al force due to the cambered wing 

pressures acting on the camber sur- 

faces is therefore obtained by simpler 

means. As indicated in sketch (k), 

dcA c is calculated from the previously 

disrussed cambered wing section 

normal force, dcN,C, as: 

dcA,C = dcN,C ($1 

with (dz/dx) evaluated at the element midchord. 

Then: 

I 
C 

'A,C = & dcA,C dx' 

0 

Sketch(k) 

(32) 

obtained as a sumnation. 

Section coefficients with thrust and vortex forces. - An overall view of the 

way the section force coefficient components previously discussed are combined 

to give total section aerodynamic coefficients (with thrust and vortex forces 

included) is given in figure 9. The catiered wing at its reference condition 

(assumed to be 0' angle of attack) produces a normal force cN c. At other 
, 

23 



angles the normal force is increased by the flat wing loading increment given by 

cN F sins/sin 1". In addition, there may be a small change in normal force 

du: to a component of the attainable thrust acting in the normal force direction 

ct sin& . Another, often larger increment, can result from the vortex force 

cv that'arises when the attainable thrust is less than the full theoretical 

thrust. 

The cambered wing at zero angle of attack produces an axial force cA c. 

An important interference term contributing to axial force at all other aigles 

of attack is produced by the flat wing loading on the camber surface. That 

increment is given as cA,F,C sins/sin 1". It is primarily this term which is 

responsible for the performance benefits of twisted and cambered wings. Finally 

at angles of attack other than that for section zero thrust, there is an attain- 

able thrust contribution, ct acos~o. 9 

A sample of the program generated section force coefficients is shown in 

figure 10. The wing planform used in the program included the fuselage modeled 

as a wing segment. The most noticeable breaks in the general shape of the dis- 

tributions are explained by the wing-body juncture at a semi-span fraction of 

0.127 and a cambered wing spanwise load distribution that was designed to be 

constant to the ,625 semi-span station and linear from there to the tip. The 

quantities c~,~ and azt are used as previously described to give theoretical 

section thrust coefficients as a function of angle of attack. 

As has been seen, with the exception of ct a and cv, the section force 

coefficients shown in figure 9 may be obtained Ly fairly simple operations involv- 

ing the angle of attack and the basic section parameters illustrated in figure 10. 

The attainable thrust and the vortex force coefficients, although now predictable 

at least to a degree, have no simply defined dependence on angle of attack. In 

employing the method of reference 1 to calculate these coefficients it is neces- 

sary to perform separate calculations for each span station at each angle of 

attack and store the results for subsequent use in the section force coefficient 

build-up. 

Attainable Thrust and Vortex Forces 

In reference 1 a study of the factors which place limits on the theoretical 

thrust was made, and an empirical method for estimating attainable thrust was 
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developed. The method is based on the use of simple sweep theory to permit a two- 

dimensional analysis, the use of theoretical airfoil programs to define thrust 

dependence on local geometric characteritics , and the examination of experimental 

two-dimensional airfoil data to define limitations imposed by local Mach numbers 

and Reynolds numbers. This method has been incorporated in the present system 

but will not be presented here because it is covered in detail in the reference 

cited. 

For wings with sharp leading edges, for which no leading-edge thrust is 

assumed to develop, Polhamus (ref. 2) established a relationship between the 

normal force induced by the separated vortex flow and the theoretical leading- 

edge thrust. According to the Polhamus suction analogy, the suction vector 

ct/cos A,~ is assumed to rotate to a position normal to the wing surface, 

where it affects the normal force rather than the chord force. Because the 

present method treats a partially developed .leading-edge thrust, it seems logical 

to consider a partial development of the vortex force. The simplest approach is 

to equate the vortex force with the undeveloped thrust: 

C = Ct - 't,a 
V cos Ale 

This treatment differs from the approach of reference 1, which postulates a 

gradual rotation of the thrust vector. The present scheme provides a simpler way 

way of handling thrust and vortex forces for wings with twist and camber. 

The suction analogy provides no information on the point of application 

of the vortex force vector. There is an implied assumption that it acts just 

behind the leading edge. Since the vortex flow field can act at locations 

which under some conditions may be far removed from the leading edge, accurate 

estimates of the vortex-induced normal force, and particularly of the axial 

force,can be made only with some knowledge of the location of the vortex flow 

field. In the absence of predictive techniques for the vortex location, the 

vortex force is assumed to act in a direction perpendicular to the wing normal 

force with no axial force component. 
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Wing Aerodynamic Coefficients 

The program techniques for integration of section forces to obtain overall 

wing characteristics are very simple. The section coefficients CN and CA are 

assumed to be constant over the span of a given section. Since the section 

coefficients are non-dimensionalized by the wing average chord,the wing coeffi- 

cients CN and CA for a given angle of attack are determined by a simple 

summation covering the wing semispan which is then divided by the semispan to 

produce coefficients based on the reference area. Wing lift and drag coefficients 

are defined as: 

cL = CN COSa - CA sina 

CD = cN sina + CA cosa 

(33) 

(34) 

Computer Program 

A computer program entitled "Attainable Aerodynamic Performances of Wings at 

Subsonic Speeds" which combines the linearized-theory wing solution with the 

methods for estimation of attainable thrust and vortex lift effects may be 

obtained for a nominal fee from: 

Computer Software Management and 

Information Center (COSMIC) 

112 Barrow Hall 

University of Georgia 

Athens, GA 30602 

(404) 542-3265 

Request the program by the designation LAR 12987. This program is written in 

FORTRAN IV for use on the Control Data 6600 and Cyber series of computers. 

information 

Up to 21 pa 

to 21 pairs 

terminology 

Data are input in namelist form under the code INPTl. The wing planform 

is specified by a series of leading- and trailing-edge breakpoints. 

irs of coordinates may be used to describe the leading edge and up 

to describe the trailing edge. The planform input data in program 

are: 
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NLEY number of leading-edge breakpoints (limit of 20) 

TBLEY table of leading-edge y-values in increasing order of y from 

wing root to wing tip 

TBLEX 

NTEY 

TBTEY 

table of leading-edge x-values corresponding to the TBLEY table 

number of trailing-edge breakpoints (limit of 20) 

table of trailing-edge y-values in increasing order of y from 

wing root to wing tip 

TBTEX table of trailing-edge x-values corresponding to the TBTEY table 

XMAX largest x-ordinate occurring anywhere on the planform 

SREF wing reference area for use in aerodynamic force and moment 

coefficients 

CBAR wing reference chord for use in aerodynamic moment coefficients 

XMC x-location of moment reference center 

ELAR desired element aspect ratio (an element aspect ratio approximately 

one-half the full wing aspect ratio is recomnended) 

The size of the wing in program dimensions is controlled by the entry: 

JBYMAX integer designating the number of elements in the spanwise 

direction (see fig. 1) (limit of 41) 

The necessary scaling is done within the program by use of a scale factor 

2(JBYMAX)/(SPAN x B). The number of complete wing elements N corresponding 

to a given JBYMAX may be approximated as 

N= 4 x JBYMAX' x ELAR 
wing aspect ratio 

The program has been written to accommodate 2000 right hand panel elements. 

Except in very special cases the JBYMAX integer will be much less than the limit 

of 41. The normal range is 10 to 25. Computational costs tend to increase as 

the square of the number of elements and the fourth power of JBYMAX. 
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The wing section mean camber surface must be specified by exactly 26 chord- 

wise ordinates at up to 21 span stations. When fewer than 26 camber coordinates 

are used to define the sections, the ordinate tables must be filled with enough 

zeros to complete the list of 26. The necessary section information i 

NYC number of spanwise stations at which chordwise sections 

to define the mean camber surface (limit of 21) 

TBYC table of y-values for the chordwise camber surface sect 

increasing order of y from root to tip 

. . 

are used 

ons, 

NPCTC number of chordwise stations used in mean camber surface definition 

(limit of 26) 

TBPCTC table of chordwise stations, in percent of chord, at which mean 

camber surface ordinates are defined; in increasing order from 

leading to trailing edge. 

TZORDC table of mean camber surface z-ordinates corresponding to the 

TBPCTC table; the full 26 values for the root chord (including 

zeros for values in excess of NPCTC) are given first, followed 

by similar information for all spanwise stations in increasing 

order of y 

NYT number of spanwise stations at which chordwise sections are used 

to define the thickness distribution (limit of 21) 

TBYT table of y-values for the chordwise thickness distribution 

sections, increasing order of y from root to tip 

The TZORDC table may be multiplied by a scale factor TZSCALE if desired. This 

may be useful if the original tabulated ordinates are nondimensionalized with 

respect to a single measurement (the wing root chord, for example) or if it is 

necessary to evaluate the effect of change in camber surface severity. 

The following wing section information is required for the calculation of 

attainable leading-edge thrust. 

NYR number of spanwise stations at which airfoil section information 

is supplied (limit of 21) 
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TBYR 

TBTOC 

TBETA 

table of y values for airfoil section information, increasing 

order of y from root to tip 

table of airfoil maximum thickness as a fraction of the chord 

table of the section location of maximum thickness as a fraction 

of the chord 

TBROC table of the leading-edge rad,ius as a fraction of the chord 

The flight or test conditions are specified as: 

XM free-stream Mach number 

RN free-stream Reynolds number (based on c) in millions, R/lo6 

NALPHA 

TALPHA 

number of angles of attack to be calculated (limit of 20) 

table of angles of attack to be calculated 

The program provides for a maximum of 50 iterations. If this number is 

reached without the convergence criteria being met, the results for the 50th --- 
iteration will be printed with a warning of the failure to meet criteria. If 
desired, the maximum number of iterations may be increased or decreased by an 

entry ITRMAX. 

The comnonly accepted practice of performing subsonic calculations for a 

Mach number of 0.0 is not appropriate for this program. Program results for 

M = 0.0 will be provided, but the attainable thrust will be zero. Realistic 

estimates of attainable thrust can be made only if both the Mach number and 

the Reynolds number correspond to actual conditions. 

The printed program results include: 

(1) An iteration by iteration history of the convergence parameters. 

(2) A listing of theoretical pressure distributions for the camber surface 

at 0" angle of attack and for the flat surface at 1" angle of attack. For each 

of the program spanwise stations (controlled by JBYMAX), interpolated or extrap- 

'olated pressure coefficients are given for a set of chordwise stations. Inter- 
polation or extrapolation is based on the assumption of curves of the form 
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Cp = kc I”‘-“’ $1 C) for the cambered wing and Cp = kf s-1 for the flat wing. r 
(3) A listing of the spanwise distribution of section normal, axial, and 

pitching moment coefficients for the cambered wing at 0" angle of attack and the 

flat wing at 1" angle of attack. The interference axial force coefficient due 

to the flat surface loading acting on the camber surface and the theoretical 

thrust parameters Ct f and azt are also printed. 
Y 

(4) A listing of wing overall theoretical aerodynamic coefficients CN, CA, 

$,' cL, and CD with no thrust and with full theoretical thrust as a function 

of angle of attack. 

(5) A listing of wing overall estimated aerodynamic coefficients CN, CA 

54' cL 
, 

, and CD with attainable thrust and vortex lift effects as a function 

of angle of attack. Attainable thrust and vortex force contributions are listed 

separately. 

Additional printed output data may be selected by use of the following 

print options: 

IPRCPD = 1 theoretical pressure distributions for each of the selected angles 

of attack. 

IPRSLDT = 1 theoretical span load distributions of CN, CA, CM, CL, and CD 

with no thrust and with full theoretical thrust for each of the 

selected angles of attack. 

IPRSLDA = 1 estimated span load distributions of CN, CA, CM, CL, and CD 

with attainable thrust and vortex force effects for each of the 

selected angles of attack. 

COMPARISONS WITH EXPERIMENTAL DATA 

The applicability of the present method to practical problems can be assessed 

by means of a series of comparisons of predictions with experimental measurements 

presented in figures 11 to 16. The data presented is for axial and normal force 

as a function of angle of attack and drag as a function of lift. Consideration 

of axial and normal force is believed to offer a more fundamental study of the 
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nature of the forces acting on the wing than does an inmediate consideration of 

lift and drag. The program provides pitching moment data, but pitching moment 

correlations are not shown here. A careful estimate of pitching moment would 

require consideration of the contributions of more configuration components than 

can be handled in the present single lifting surface representation. In addition, 

the pitching moment is sensitive to the location of the vortex force, and although 

the present method provides an approximation of the magnitude of this force,it 

provides no information on its location. In these figures the curves labeled 

"present method" have been obtained by use of the computer program described in 

this report. The vortex force contribution to the present method result is shown 

as a shaded band because of some uncertainties as to the proper method of 

handling it. 

In the early stages of the development of this method the vortex force was 

assumed to act at the wing leading edge where it produced a significant axial 

force in addition to the normal force. This, however, was found to produce 

results inconsistent with the experimental data. Because, in general, the vor- 

tex will act well aft of the leading edge over a region of the wing where it is 

likely to produce little or no axial force, only the normal force induced by the 

vortex is now considered. There is a need for simple empirical methods which 

can provide estimates of the location of the vortex action line. 

No estimated skin friction and form drag contributions to the coefficients 

have been made. For the comparisons with experimental data shown in this report, 

the axial force at zero angle of attack has been set equal to the experimental 

value. However, where comparisons have been made for twisted and cambered 

wings and for flat wings of the same planform,C A at a = 0" was determined from 

experimental data for the flat wing only, so that in those cases predictions of 

camber induced drag are those given by the present method. 

Sketches included in the figures show the actual model planforms and the 

program planforms which attempt to model the fuselage as well as the wing. Mean 

camber lines for the fuselage as well as the wing are used in defining the 

program lifting surface shape. For each of the examples treated, at least two 

computer runs were made to insure that the mathematical representation was ade- 

quate. Consecutive runs with the total number of elements differing by a factor 
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of two were made and the results accepted only if the differences in all the per- 

tinent coefficients (those illustrated in figure 9) were judged to be small. In 

all cases but one, which will be discussed in detail, this test could be met 

with a reasonable number of elements and reasonable computational costs. 

A comparison of program results with experimental data from reference 6 for 

both a flat and a twisted and cambered delta wing of aspect ratio 2 in combina- 

tion with a simple body of revolution is shown in figure 11. The wing incorpor- 

ated a 5 percent thick NACA 0005-63 section. The twisted and cambered wing was 

designed for a trapezoidal spanwise load distribution at a Mach number of 1.53 

and a design lift coefficient of 0.25. The data presented are for a Mach number 

of 0.61 and a Reynolds number of 3.0 x 106. In examining first the flat wing 

data and in particular the axial force,it is seen that nearly full thrust is 

developed over only a small angle of attack range, and that only a small portion 

of the theoretical thrust is developed at the largest angles shown. The present 

method gives a reasonable estimate of the thrust actually produced. Because of 

the failure to produce thrust, a separated leading-edge vortex would be expected 

which in turn would produce a non linear increase in normal force. The normal 

force data indicate that such a vortex force actually is present, and is predicted 

by the present method. The method, however, does not consider the vortex loca- 

tion and thus can lead to prediction of too large an increment at large angles 

where much of the vortex structure may actually be aft of the wing trailing edge. 

The present method is seen to provide a good estimate of the lift-drag perfor- 

mance of this wing-body combination. The no thrust and full thrust limits pro- 

vide a broad range of aerodynamic performance possibilities, and thus a reasonably 

accurate determination of attainable thrust is a critical part of the estimation 

process. 

For the twisted and cambered wing [fig. 11(b)] the axial force curve is quite 

different. It is no longer symmetrical, and has more negative values of the 

coefficient at moderate and large angles. The theory indicates that even without 

thrust, negative values of axial force could be achieved. As might be expected, 

for equal values of theoretical thrust, the fraction attainable for the 

cambered wing is not far different than that for the flat wing. The experi- 

mental increment in axial force at zero angle of attack is seen to be larger 

than the increment predicted by the program. As for the flat wing, there 
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seems to be a vortex contribution to the normal force. Again there is a good 

correlation of the experimental drag and the program predictions, except near 

zero lift. 

Similar data for a wing body combination (ref. 7) with an aspect ratio 4 

delta wing are shown in figures 12(a) and 12(b). This wing also employed a NACA 
0005-63 section. The twisted and cambered wing of the pair was designed for a 

spanwise trapezoidal load distribution at a Mach number of 1.15 and a lift 

coefficient of 0.35. The data presented are for a Mach number of 0.25 and a 

Reynolds number of 8.0 x 106. As can be seen in both parts of this figure, this 
wing at a lower Mach number and at a larger Reynolds number than for the first 

example, achieves a considerably greater thrust force which is well predicted 

up to an angle of attack of about 12 degrees. The predicted vortex normal force 

fails to materialize, perhaps due to vortex bursting. For both the flat and the 

twisted and cambered wing, the lift-drag polar prediction is good up to lift 

coefficients of about 0.6. Note that for the flat wing CD follows the full 

thrust curve very closely up to a lift coefficient of about 0.25 and that the 

twisted and cambered wing displays nearly full thrust to a CL of about 0.35. 

Beyond these points the breakaway is pronounced. 

Data for a supersonic cruise fighter design from reference 8 are shown in 

figure 13. The blended wing-body model incorporated an under the fuselage engine 

inlet. The wing camber surface was determined from mean ordinates of cross 

sections with the duct intake area removed. The test conditions are M = 0.60 

and R = 2.8 x 106. Except for a prediction of too large a normal force at zero 

angle of attack and a small underestimation of the attainable thrust at moderate 

angles of attack,the correlation is not far different than those shown previously. 

The lift-drag polar prediction is good through most of the lift coefficient range 

shown. 

A rather complex high performance supersonic transport configuration from 

reference 9 is treated in the example shown in figure 14. This configuration 

incorporated a twisted and cambered wing, a cambered fuselage, engine nacelles, 

and horizontal and vertical tails. The nacelles and the horizontal and vertical 

tails can not be represented at all in the single lifting surface provided for 

in the program. In the determination of normal force, the horizontal tail was 
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treated separately,and its normal force was added without interference to that 

of the wing (about a 5% increase in wing normal force at a given angle of attack). 

No other account of these additional components was made. Apparently only a small 

amount of the theoretical leading-edge thrust was achieved and that only for 

small angles of attack. The reason for this is not known. Because the present 

method overestimates the thrust it necessarily underestimates the vortex lift 

increments. These errors tend to compensate one another in the evaluation of 

drag and thus the method still gives a reasonable prediction of the lift-drag 

polar. The prediction tends to fall below the experimental data because the 

benefits of a given increment in thrust are greater than the benefits of a 

corresponding increase in normal force. 

Up to this point, the correlation examples have treated vehicles designed 

for supersonic cruise. For this class of vehicle with relatively thin wing 

sections, the degree of attainment of leading-edge thrust may vary greatly with 

changes in geometric properties of the wing and with changes in operational con- 

ditions. Thus the present capability for prediction of attainable thrust and 

vortex effects for twisted and cambered as well as flat wings is a valuable 

asset. 

The subsonic transport wing-body example from reference 10 treated in 

figure 15 presented a most difficult challenge for the present numerical method. 

The problem lay in the nature of the wing mean camber surface. First, the camber 

surface slope was quite large (about 0.3) at the wing leading edge, and second, 

the variation of this slope with distance behind the leading edge could be con- 

sidered to be linear for only 3 or 4 percent of the chord. It will be recalled 

that one assumption used in the derivation of the method for evaluation of 

leading-edge thrust called for a linear variation of camber surface slope over at 

least the first two elements. Even with the 1788 total wing elements used in the 

computer run for which data are presented, this condition could not quite be met. 

Differences in computed results for different numbers of elements (and different 

chordwise spacing) indicated, however, that the solution was nearly converged. 

In figure 15 note the steep slope of the no thrust axial force line. This, 

in addition to the theoretical thrust contribution,is one of the key elements 

provided by the linearized theory solution. If the program results as well as 
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the experimental data are to be believed, the wing-body achieves essentially 

100 percent of the theoretical thrust up to the largest angle for which data are 

given. The attainable thrust prediction shows a reduction in the attainable 

thrust percentage to about 84% at 6" angle of attack. This difference in axial 

force, although it may appear to be small, is almost entirely responsible for 

the difference between predicted and measured drag in the lift-drag polar. 

The final example provides something close to an ultimate test for this 

computational system. In figure 16 program results are compared with measured 

data from reference 10 for a full-scale airplane tested in the NASA Langley 

Full Scale Wind Tunnel. The airplane is an advanced technology twin engine 

general aviation aircraft. For the test data shown here the horizontal tail was 

removed but all other components including the "stopped" propellers were in place. 

The program wing planform is complex and the mean camber surface which accounts 

for the over-the-wing nacelles has a rather severe shape. As shown in figure 16, 

the correlation between the predicted and the experimental data is poor. The 

source of the disagreement is directly traceable to the slope of the normal force 

coefficient. The predicted leading-edge thrust is too large because the section 

loadings and thus the singularity strengths are too large. An analysis of this 

same configuration presented in reference 11 experienced the same difficulty in 

prediction of normal force. An account of boundary-layer effects on the effective 

airfoil profile made in that report produced a somewhat better agreement, but at 

large angles the normal force was still overestimated. The problem may be due 

to flow separation caused by unpredictable nacelle, fuselage, and wing inter- 

actions. 

It is seen that vehicles designed for subsonic cruise present a more diffi- 

cult problem than vehicles designed for supersonic cruise. Their thicker wing 

sections are more difficult to handle properly in the numerical solution without 

a large number of elements and increased computational costs. Furthermore, the 

thicker wings tend to produce leading-edge thrust close to the full theoretical 

values so that estimation of attainable thrust is not as critical a factor. 

Even so, some of the techniques presented here may prove to be valuable additions 

to other computational methods that perhaps are more suited to the geometric 

characteristics of subsonic cruise aircraft. 
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For a given configuration, the attainable thrust increases with increasing 

Reynolds number. Thus extrapolation of wind-tunnel data to full scale flight 

conditions requires consideration of this effect. The computing program 

described herein provides a means of performing the extrapolation. Because only 

increments in thrust are required, 

modeling of a wing alone with no 

twist or camber is sufficient. As 

shown in sketch (1) the increment 

in thrust coefficient is found as 

the difference between computer 

runs for the wind tunnel and the 

flight Reynolds number. The 

increment is applied to the 

wind-tunnel axial force data as 

a function of the absolute value 

of a- azt w where 
, QZt.W is a 

measure of an effectiie or average 

angle of attack for zero thrust for 

the wing as a whole. For a wing 

without twist or camber this angle 

is zero. For a twisted and cambered 

wing, as shown in sketch (m), the 

angle c( zt w may be found by fitting 

a curve of the form: 

1’ / / 
% R2 

RI 

I 
Q 

Q - Qzt,w 

Sketch (I) 

CA = k, + k2b - a.zt,w) + k3b - "zt,w)2 

to the experimental axial force data. 

An example of Reynolds number extrapolation for the delta wing configura- 

tions of reference 7 and figure 12 is given in figure 17. Here the extrapolation 

is from one wind-tunnel Reynolds number to another. For both the flat and the 

twisted and cambered versions of this wing-body configuration there is a bene- 

ficial Reynolds number effect at least as large as that given by the extrapola- 

tion. For the twisted and cambered wing there is evidence of a drastic flow 
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break-down (perhaps vortex bursting) beyond Q = 8" at the lower Reynolds number. 

The improvement at the higher Reynolds number is much larger than that attribut- 

able to leading-edge thrust alone, which suggests an additional Reynolds number 

benefit related to the overall flow field. 

Q 

Sketch(m) 
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CONCLUDING REMARKS 

This report describes numerical methods which have been incorporated into a 

computer program to provide estimates of the subsonic aerodynamic performance of 

twisted and cambered wings of arbitrary planform with attainable thrust and vor- 

tex lift considerations taken into account. The computational system is based 

on a linearized theory lifting surface solution which provides a spanwise distri- 

bution of theoretical leading-edge thrust in addition to the surface distribu- 

tion of perturbation velocities. In contrast to the commonly accepted practice 

of obtaining linearized theory results by simultaneous solution of a large set 

of equations, the approach used here relies on a solution by iteration. The 

method also features a superposition of independent solutions for a cambered 

and twisted wing and a flat wing of the same planform to provide,at little 

additional expense, results for a large number of angles of attack or lift coef- 

ficients. 

A previously developed method is employed to assess the portion of the 

theoretical thrust actually attainable and the portion that is felt as a vortex 

normal force. 

The correlations presented here demonstrate the potential of the present 

method for application to the subsonic analysis of vehicles designed for super- 

sonic cruise. Vehicles of this class tend to have geometric characteristics that 

present no significant problems in mathematical modeling. Also for this class 

of vehicle with relatively thin wing sections, the degree of attainment of leading- 

edge thrust may vary greatly with changes in geometric properties of the wing 

and with changes in operational conditions. Thus the present capability for 

prediction of attainable thrust and vortex effects for twisted and cambered as 

well as flat wings is a valuable asset. Vehicles designed for subsonic cruise 

present a more difficult problem. Their thicker wing sections are more difficult 

to handle properly in the numerical solution without a large number of elements 

and increased computational costs. Furthermore, the thicker wings tend to 

produce leading-edge thrust close to the full theoretical values so that esti- 

mation of attainable thrust is not as critical a factor. Even so, some of the 

techniques presented here may prove to be valuable additions to other computa- 

tional methods that perhaps are more suited to the geometric characteristics of 

subsonic cruise aircraft. 
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linearized theory. 
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